

Correlation of the SAGE III on ISS Sensor Assembly Thermal Model to Thermal Vacuum Testing

Ruth M. Amundsen
NASA Langley Research Center

TFAWS15-PT-12

Agenda

- Background
- SAGE III thermal model
- Sensor assembly
- TVAC test setup
- Model complexities
- Thermal model correlation
- Conclusion

SAGE III Instrument Payload

Launch on SpaceX

Integration Hangar

Dragon Unpressurized Cargo Module

TFAWS 2015 – August 3-7, 2015 – Silver Spring, MD

SAGE III on ISS

S3 Truss Payload Attachment System-4 Site (PAS-4)

TFAWS 2015 - August 3-7, 2015 - Silver Spring, MD

SAGE III Thermal Model

Heritage Flight Hardware

- SAGE III has been maintained at NASA LaRC
- Hexapod has been maintained at Thales Alenia Space Italia (TAS-I) in Turin, Italy
- Hardware is >20 years old

Sage III Instrument

Hexapod Pointing System

8x15' Thermal Vacuum Chamber

- Instrument TVAC testing at LaRC
- Nov 2014 March 2015
- Unpowered, heater-only, and powered balances, hot and cold

Thermal Model Complexities

- Heritage hardware
- Lamps in TVAC
- Thermo-electric cooler
- Elevation motor power

Sensor Assembly Configuration

TFAWS 2015 - August 3-7, 2015 - Silver Spring, MD

"IR" Lamps in TVAC

TFAWS 2015 – August 3-7, 2015 – Silver Spring, MD

Lamp Issues

- Control noise
- Lack of stable power measurement
- Solar spectrum fraction varies with voltage
 - Difficult to run transient with changing chamber environment
 - Radiation conductors (radks) must be run in solar as well as IR
 - Rays shot from each lamp bank in separate radk case
 - Difficult to determine solar fraction
 - Some TVAC surfaces did not have measured solar absorptivity
 (α)

Thermal Noise due to Lamp Control

Solar Spectrum of Lamps

POWER DISSIPATION VS. VOLTAGE FORMULA

$$\frac{w}{W} = \left(\frac{V}{V}\right)$$
 1.54 $W = \text{Power Dissipated, Watts}$
 $W = \text{Rated Power, Watts}$
 $W = W \left(\frac{V}{V}\right)$ 1.54 $V = \text{Lamp Voltage, Actual V}$
 $V = \text{Lamp Voltage, Rated}$

Thermo-electric Cooler

TEC Implementation in TD

- Test data showed TEC held delta of 18°C (original spec >50°C)
- Back conductor used to account for TEC degradation
- Symbols used for all control variables to allow parametric runs
- Four cases with TEC setpoint changes used for correlation

A STATE OF THE STA

TEC Correlation

Elevation Motor

Elevation Motor Power – Initial Measurements

Initial Correlation to Elevation Motor Events

TFAWS 2015 – August 3-7, 2015 – Silver Spring, MD

Elevation Motor Power - Actual

• This is a case where Power $\neq I * V$ (instead, $P = I^2R$)

Final Correlation to Elevation Motor Events

TFAWS 2015 – August 3-7, 2015 – Silver Spring, MD

Example of Heater-Only Balance Transient

TFAWS 2015 - August 3-7, 2015 - Silver Spring, MD

Example Powered Transient to Cold Balance

Example Correlation of Heater-Controlled Part

Example Unpowered Cooldown Correlation

TFAWS 2015 - August 3-7, 2015 - Silver Spring, MD

Summary Correlation Results

	Hot powered transient	Hot cooldown	Cold powered transient	Cold cooldown	Overall error
Overall RMS error (°C)	1.4	0.5	2.7	1	1.4
Avg error (°C)	-0.2	0.2	0.9	-0.6	0.1
Flight sensor RMS error (°C)	1.5	0.5	1.6	1.2	1.2

RMS error calculated over all sensors, entire transient timeline

Conclusions

- Quartz "IR" lamps in TVAC make correlation difficult
- TD implementation of TEC effective
- Power not always I*V, depending on component
- Heritage hardware/model feasible to correlate well
- Heater-only balance extremely useful in correlation
- Unpowered cooldown extremely useful in correlation

Backup

Major Model Changes in Correlation

- Measured solar α for TVAC aluminum/steel parts
- Emissivity and ε* for crushed MLI
- Motor powers
- TEC power and back-conductor
- Solar lamp fraction
- TVAC shroud temperatures
- Contact for GSE hardware to TVAC tray
- Mass factors for cabling
- Heater control location
- Scan head position

Sensor Assembly Hardware

Scan head and azimuth assemblies covered in perforated silver

Spectrometer thermal shroud covered in aluminized Kapton (SA is mounted in a GSE fixture for testing)

Azimuth Motor Power

Azimuth Motor Temperature Correlation

TEC Case1

TFAWS 2015 – August 3-7, 2015 – Silver Spring, MD

TEC Case1

TFAWS 2015 – August 3-7, 2015 – Silver Spring, MD

TEC Case1

TFAWS 2015 – August 3-7, 2015 – Silver Spring, MD